Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
 
EE Times-Asia > Memory/Storage
 
 
Memory/Storage  

Faster magnetic memory switching promises new use cases

Posted: 01 Sep 2014  Print Version  Bookmark and Share

Keywords:A*STAR Institute of High Performance Computing  magnetic memory  STT-MRAM 

A team of researchers at the A*STAR Institute of High Performance Computing, led by Chee Kwan Gan, has come up with techniques to improve STT-MRAM memory by identifying design options for achieving faster switching speeds, and hence faster data write times.

Computer hard drives store data by writing magnetic information onto their surfaces. With the recent discoveries done by the scientists, magnetic effects may also soon be used to improve active memory in computers, potentially eliminating the need to boot up a computer. One way to achieve this is through a memory technology known as STT-MRAM that uses information stored in a pair of thin magnetic layers.

In STT-MRAM devices, the relative orientation of the magnetic fields in the two thin layers determines the electrical resistance experienced by a current flowing through the device. If the magnetisations of both layers are aligned in the same direction, then the electrical resistance will be lower than when the layers have different magnetic alignments.

Switching the device between different magnetic states, which corresponds to writing information into the memory, is achieved by electrons whose magnetic property, the spin, is aligned in one direction. Collectively, these electrons are able to change the direction of the magnetisation in one of the layers. The time it takes to switch the magnetic direction depends on several factors, including the initial relative orientation of the magnetic fields in the two layers. The magnetisation of the switched layer can follow various complex paths during the switching process.

Switching of a magnetic layer in an STT-MRAM

Pathways for the switching of a magnetic layer in an STT-MRAM device depend on the relative alignment of the two layers in the device. (2014 A*STAR Institute of High Performance Computing)

In previous experiments, the switching process was found to depend on two parameters. Using their computational model, the researchers could focus on one parameter, the less-studied field-like term, which accounts for the relative orientation of the magnetic fields in both layers. The strength of this term depends on various factors, such as the device geometry and the materials used.

The calculations by the researchers show that, for devices with a strong field-like term, there is greater potential to reduce switching times than for devices in which the field-like term is negligible. Gan explains that this discovery will assist the development of improved STT-MRAM devices. "Our findings will motivate experimentalists to fabricate devices with strong field-like terms," stated Gan.

Furthermore, a better understanding of the origin of the field-like term is needed, added Gan. "Although the effect of the field-like term has been confirmed experimentally and investigated in this work through simulations, it is important to understand its physical origins in order to improve material design."

The A*STAR-affiliated researchers contributing to this research are from the Institute of High Performance Computing.





Article Comments - Faster magnetic memory switching pro...
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 
 
Back to Top