Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
 
EE Times-Asia > Manufacturing/Packaging
 
 
Manufacturing/Packaging  

Nanotubular mat'l offers energy storage, conversion advantage

Posted: 19 Aug 2014  Print Version  Bookmark and Share

Keywords:Lawrence Livermore  energy storage  nanotubular  aerogel 

A team of researchers from Lawrence Livermore has developed a material that they said is 10 times stronger and stiffer than traditional aerogels of the same density. According to them, the ultralow-density, ultrahigh surface area bulk material with an interconnected nanotubular makeup could be used in catalysis, energy storage and conversion, thermal insulation, shock energy absorption and high energy density physics.

Ultralow-density porous bulk materials have recently attracted renewed interest due to many promising applications. Unlocking the full potential of these materials, however, requires realisation of mechanically robust architectures with deterministic control over form, cell size, density and composition, which is difficult to achieve by traditional chemical synthesis methods, according to LLNL's Monika Biener, lead author of a paper appearing on the cover of the July 23 issue of Advanced Materials.

Biener and colleagues report on the synthesis of ultralow-density, ultrahigh surface area bulk materials with interconnected nanotubular morphology. The team achieved control over density (5-400mg/cm3), pore size (30-4um) and composition by atomic layer deposition (ALD) using nanoporous gold as a tunable template.

"The materials are thermally stable and, by virtue of their narrow unimodal pore size distributions and their thin-walled, interconnected tubular architecture, about 10 times stronger and stiffer than traditional aerogels of the same density," Biener said.

The 3D nanotubular network architecture developed by the team opens new opportunities in the fields of energy harvesting, catalysis, sensing and filtration by enabling mass transport through two independent pore systems separated by a nanometre-thick 3D membrane.

Other Livermore authors include Jianchao Ye, Theodore Baumann, Y. Morris Wang, Swanee Shin, Juergen Biener and Alex Hamza.





Article Comments - Nanotubular mat'l offers energy stor...
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 
 
Back to Top