Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
 
EE Times-Asia > Power/Alternative Energy
 
 
Power/Alternative Energy  

Chemists focus on Li-sulphur cells as alternative to Li-ion

Posted: 02 Jul 2014  Print Version  Bookmark and Share

Keywords:University of Waterloo  lithium-sulphur  lithium-ion  battery  electric car 

Fact: Lithium-sulphur batteries have a very high storage capacity. That is the reason why chemists at the NIM Cluster at LMU and at the University of Waterloo in Ontario, Canada, synthesised a novel material that paves the way to modern lithium-sulphur batteries. With this discovery, electric cars can go significantly farther without any fear of the batteries dying out on you.

Whether or not the future of automotive traffic belongs to the softly purring electric car depends largely on the development of its batteries. The industry is placing most of its hopes in lithium-sulphur batteries. Moreover, thanks to the inclusion of sulphur atoms, they are cheaper to make and less toxic than conventional lithium-ion power packs.

Li-ion battery

However, the lithium-sulphur battery still presents several major challenges that need to be resolved until it can be integrated into cars. For example, both the rate and the number of possible charge-discharge cycles need to be increased before the lithium-sulphur battery can become a realistic alternative to lithium-ion batteries.

The chemists professor Thomas Bein (LMU), coordinator of the energy conversion division of the Nanosystems Initiative Munich, professor Linda Nazar (University of Waterloo, Waterloo Institute of Nanotechology) and their colleagues have succeeded in producing a novel type of nanofibre, whose highly ordered and porous structure gives it an extraordinarily high surface-to-volume ratio. Thus, a sample of the new material the size of a sugar cube presents a surface area equivalent to that of more than seven tennis courts.

"The high surface-to-volume ratio, and high pore volume is important because it allows sulphur to bind to the electrode in a finely divided manner, with relatively high loading. Together with its easy accessibility, this enhances the efficiency of the electrochemical processes that occur in the course of charge-discharge cycles. And the rates of the key reactions at the sulphur electrode-electrolyte interface, which involve both electrons and ions, are highly dependent on the total surface area available," as Benjamin Mandlmeier, a postdoc in Bein's Institute and a first co-author on the study, noted.

A novel recipe and a cleverly designed mode of synthesis are the key factors that determine the properties of the new materials. To synthesise the carbon fibres, the chemists first prepare a porous, tubular silica template, starting from commercially available, but non-porous fibres. This template is then filled with a special mixture of carbon, silicon dioxide and surfactants, which is then heated at °C. Finally the template and the SiO2 are removed by an etching process. During the procedure, the carbon nanotubes, and thus the pore size, shrink to a lesser extent than they would in the absence of the confining template, and the fibres themselves are correspondingly more stable.

"Nanostructured materials have great potential for the efficient conversion and storage of electrical energy," said Bein. "We in the NIM Cluster will continue to collaborate closely with our colleagues in the Bavarian SolTech Network in order to explore and exploit the properties of such structures and their practical applications."





Article Comments - Chemists focus on Li-sulphur cells a...
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

-->
 
 
Back to Top