Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
 
EE Times-Asia > Power/Alternative Energy
 
 
Power/Alternative Energy  

The lowdown on batteries: Lithium thionyl chloride

Posted: 26 May 2014  Print Version  Bookmark and Share

Keywords:battery  IEC 60950  EMI  lithium thionyl chloride  voltage 

Here's another instalment in this series of articles on the various battery technologies available to us. Along the way, in addition to the nitty-gritty technology details, I'm including tips and tricks on selecting the most appropriate battery technology for your application, along with tidbits of trivia and nuggets of knowledge, as Max Maxfield would say.

Tip No. 7: Designing enclosures
When designing an enclosure for batteries, do not overlook the following:
 • The effects of wire inductance and resistance
 • The effects of contact resistance and corrosion over time
 • Mechanical protection from vibration, punctures, etc.
 • Minimum spacing requirements for safety (IEC 60950 and others), creepage, and clearance
 • Thermal management
 • Ease of replacement/serviceability
 • For shipping, protection from shorts or accidental device activation (providing disconnection for example)
 • EMI (radio emissions) and susceptibility (withstands high-power RF). This is especially true for smart batteries
 • Environmental concerns, such as outgassing, leaking, air breathing, radiation, explosion, pressure, etc.
 • Design for manufacturing and avoidance of high currents when connecting the battery for the first time

The lithium thionyl chloride (Li-SOCl2) battery
This specific type may have a liquid cathode, suitable for temperatures as low as -55°C, which puts it firmly in the category suitable for low-temperature performance. Unlike other battery technologies using liquids that produce a gas by-product, this technology is very good, with limited emissions even under abusive conditions. Unfortunately, the electrolyte is toxic and reacts with water.

The battery has a high specific energy and low weight, but makes sacrifices for a very high internal resistance, and therefore has a low-rate-only discharge with limited short-circuit current. An additional concern is that, following long-term storage, the battery exhibits a delay in producing a good terminal voltage when finally put into service. At least one company has compensated for some of these shortcomings by including a capacitor inside the package. (See TadiranBat.com.)

Very low-current versions of this technology find use in battery backup for memories and remote monitoring-metering, while higher-current versions are used in some military and automotive applications. Safety concerns (such as explosion and its Class 9 Hazmat shipping classification) and high cost have prevented more widespread use of this technology. Click here for information on handling and safety.

 • Specific energy: approximately 500 Wh/kg
 • Energy density: approximately 1200 Wh/L
 • Specific power: approximately 18 W/kg
 • Discharge efficiency: 6 to 94 % (highly dependent on load)
 • Energy/consumer-price: 5.1 Wh/dollar
 • Self-discharge rate: 0.08 %/month
 • Cycle durability: (primary battery)
 • Nominal cell voltage: 3.5V typical (3.65V new, open circuit)
 • Cut-off voltage: 3V per cell, loaded
 • Temperature range: -55 to +85°C typical (some speciality types up to +130°C)

Chemistry
4Li + 2SOCl2 → 4LiCl + S + SO2

The following images illustrate some interesting characteristics associated with lithium thionyl chloride batteries.

Figure 1: Half AA size, Blue curve=180K Ohms for four years. Grey curve=180 Ohms for 30 hours. Zoom circles are closeup of voltage recovery whenever the discharge is interrupted.

Figure 2: Voltage delay effect, terminal voltage verses time.

Figure 3: Dependence of capacity on current—self-discharge increases with operation life.

Figure 4: Terminal voltage and internal resistance with depth of discharge for two load types.

In my next column, we'll look at some more tips and tricks, and we will consider another battery technology. In the meantime, as always, I welcome any questions or comments.

About the author
Ivan Cowie is the Chief Engineer at MaxVision.

To download the PDF version of this article, click here.





Article Comments - The lowdown on batteries: Lithium th...
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 
 
Back to Top