Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
 
EE Times-Asia > Manufacturing/Packaging
 
 
Manufacturing/Packaging  

Patterning technique reduces material coercivity

Posted: 20 Mar 2014  Print Version  Bookmark and Share

Keywords:North Carolina State University  coercivity  nickel ferrite  thin film 

North Carolina State University researchers have come up with a technique to reduce the coercivity of nickel ferrite (NFO) thin films by as much as 80 per cent. They were able to do this by patterning the surface of the material, opening the door to more energy efficient high-frequency electronics such as sensors, microwave devices and antennas.

"This technique reduces coercivity, which will allow devices to operate more efficiently, reducing energy use and improving device performance," noted Goran Rasic, a Ph.D. student at NC State and lead author of a paper describing the work. "We did this work on NFO but, because the reduced coercivity is a direct result of the surface patterning, we think our technique would work for other magnetic materials as well."

Corduroy pattern on the surface of NFO thin films

By creating a corduroy pattern on the surface of NFO thin films, researchers have been able to lower the coercivity of the NFO by 30-80 per cent, depending on the thickness of the film. (Image: Goran Rasic)

Coercivity is a property of magnetized materials and is the amount of magnetic field needed to bring a material's magnetization to zero. Basically, it's how much a material likes being magnetic. For devices that rely on switching current back and forth repeatedly, such as most consumer electronics, you want materials that have low coercivity, which improve device performance and use less energy.

Iron oxides, like NFO, have a variety of properties that are desirable for use in high-frequency devices, but they do have a down side: they have high coercivity. The research from NC State helps address this problem.

By creating a corduroy pattern on the surface of NFO thin films, researchers have been able to lower the coercivity of the NFO by 30-80 per cent, depending on the thickness of the film. Thinner films experience a larger reduction in coercivity. The surface pattern on the NFO films consists of raised structures that are 55nm high and 750nm wide. The structures run parallel to each other and are spaced 750nm apart, creating the corduroy effect.





Article Comments - Patterning technique reduces materia...
Comments:  
*  You can enter [0] more charecters.
*Verify code: