Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
 
EE Times-Asia > Sensors/MEMS
 
 
Sensors/MEMS  

Research team creates self-powered wireless photodetectors

Posted: 17 Mar 2014  Print Version  Bookmark and Share

Keywords:A*STAR Institute of Materials Research and Engineering  photodetector  RF transmitter  sensor 

Researchers from A*STAR Institute of Materials Research and Engineering have unveiled a light detector that can harvest just small quantities of detected light to produce enough energy to power a sensing signal transmission through an RF transmitter. The team, comprised by Kui Yao and colleagues, developed the system, which can be used as brightness sensors and as receivers for remote control devices in electrical gadgets.

While the energy contained in a beam of light can be converted into electricity, this energy is not usually sufficient to continuously power an electrical circuit. Even the use of batteries to power a circuit is impractical in many circumstances, explains Yao. "Use of photosensors may take place under extremely harsh conditions intolerable to batteries, or involve environmental monitoring network systems where it may be too expensive or unrealistic to maintain batteries for each sensor."

Operating an electrical circuit under low-power circumstances requires a build-up of energy, which must be generated by the photodetector. However, commonly used photodetector materials, which are based on semiconductors, lose too much energy for this to occur. "Conventional photodetectors can't accumulate the minute photovoltaic energy and then harness it to drive a load in a sustainable manner," noted Yao.

To overcome such energy losses, Yao and colleagues developed photodetectors made from ferroelectric compounds. These insulating materials can separate electrical charges as well as store them with low losses. Ferroelectric detectors can also generate a larger electrical voltage than semiconductors, making it easier for them to power other electrical components.

The researchers connected their ferroelectric detector to a specially designed electrical circuit, which is mechanically opened and closed by a switch in the form of a piezoelectric cantilever. Any generated electricity is temporarily stored in the ferroelectric detector and a capacitor. Once the electrical charge of the capacitor is sufficiently high, the cantilever changes its shape and closes the electrical circuit. This activates a commercial radio transmitter.

So far, the team's main challenge in developing the device has been to minimize electrical losses. Remarkably, Yao and his team have shown that almost 70 per cent of the accumulated electrical charge can be retrieved from the capacitor, even ten minutes after the light source has been switched off. This advantage provides the team's device with the potential for use in a wide range of applications such as wireless optical sensors and monitoring networks.

Photodetectors

Ferroelectric compounds used in photodetectors can help to minimize electrical losses, facilitating a sensor and monitoring network that can go 'off the grid.'





Article Comments - Research team creates self-powered w...
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 
 
Back to Top