Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
EE Times-Asia > Power/Alternative Energy
Power/Alternative Energy  

Implement compact wireless battery charging

Posted: 04 Feb 2014  Print Version  Bookmark and Share

Keywords:connector  Wireless charging  LTC4120  PowerbyProxi  DC-AC transmitter 

Batteries provide power to many different applications across a wide range of industries. In many of these applications, a charging connector is difficult or impossible to use. Wireless charging adds value, reliability and robustness in these and other applications.

Some products require sealed enclosures to protect sensitive electronics from harsh environments and to allow for convenient cleaning or sterilisation. Other products may simply be too small to include a connector, and in products where the battery-powered application includes movement or rotation, then charging with wires is even less feasible.

Wireless power system overview
As shown in figure 1, a wireless power system is composed of two parts separated by a gap: transmit circuitry, including a transmit coil, and receive circuitry, including a receive coil. The transmit circuitry generates a high frequency alternating magnetic field around the transmit coil. This magnetic field is coupled to the receive coil and converted to electrical energy, which can be used to charge a battery or power other circuitry.

Figure 1: Wireless charging system overview.

When designing a wireless power charging system, a key parameter is the amount of charging power that actually adds energy to the battery. This received power depends on many factors, including the amount of power being transmitted, the distance and alignment between the transmit coil and the receive coil, also known as the coupling between the coils, and finally, the tolerance of the transmit and receive components.

The primary goal in any wireless power design is to guarantee delivery of the required power under worst-case power transfer conditions. However, it is equally important to avoid thermal and electrical overstress in the receiver during best-case conditions. This is especially important when output power requirements are low; for example, when the battery is fully charged or nearly fully charged. In such a scenario, available power from the wireless system is high, but demanded power is low. This excess power typically leads to high rectified voltages or a need to dissipate the excess power as heat.

There are several ways to deal with excess power capacity when the demanded receiver power is low. The rectified voltage can be clamped with a power Zener diode or transorb. However, this solution is typically physically large and generates considerable heat. Assuming no feedback from the receiver, the maximum transmitter power can be reduced, but this will either limit the available received power or it will reduce the transmit distance. It is also possible to communicate received power back to the transmitter and adjust real-time transmit power accordingly. This is the technique used by wireless power standards such as the Wireless Power Consortium Qi standard. However, it is also possible to solve this issue in a compact and efficient manner without resorting to complicated digital communication techniques.

The LTC4120 wireless power receiver integrates technology patented by PowerbyProxi, a Linear Technology partner. PowerbyProxi's Dynamic Harmonisation Control, or DHC, technique enables contactless charging without thermal or electrical overstress concerns in the receiver. Using this technology, up to 2W can be transmitted over a distance of up to 1.2cm.

By modulating the resonant frequency of the receiver from a "tuned" condition to a "detuned" condition, DHC guarantees delivery of power under worst-case conditions without worrying about unloaded best-case conditions. This allows the LTC4120-based wireless charging system to operate over a wide transmit distance with significant coil misalignment. Furthermore, by controlling power transfer on the receiver-side only, the LTC4120-based system eliminates all potential communication interference issues, which might disrupt power delivery.

System performance
Figure 2 shows the amount of battery charge power received by an LTC4120 wireless power receiver as the separation distance and the centre-to-centre alignment between the transmit coil and receive coil is varied. With 10 mm of separation, 2W of charge power is available and the coils can be misaligned significantly without much reduction in available power. While many different wireless power transmitters are available, the data in figure 2 was generated using a basic DC-AC transmitter. The basic transmitter is an open-source reference design.

Figure 2: Transmit distance/received power analysis.

1 • 2 Next Page Last Page

Article Comments - Implement compact wireless battery c...
*  You can enter [0] more charecters.
*Verify code:


Visit Asia Webinars to learn about the latest in technology and get practical design tips.

Back to Top