Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
 
EE Times-Asia > Manufacturing/Packaging
 
 
Manufacturing/Packaging  

Double-layer capping improves packaging for MEMS devices

Posted: 20 Jan 2014  Print Version  Bookmark and Share

Keywords:A*STAR Institute of Microelectronics  MEMS  sensor  switch  radio filter 

A team of researchers at A*STAR Institute of Microelectronics, Singapore has created an innovative technology that promises safe and functional encasements for microelectromechanical systems (MEMS) such as sensors, switches or radio filters.

"MEMS devices need certain ambient conditions to operate properly and have fragile hanging structures that must be protected," said Jae-Wung Lee, researcher at A*STAR IME. "We developed a new thin-film encapsulation (TFE) technique to meet these two requirements."

During TFE, a MEMS device is embedded in a sacrificial layer of one material before adding a cap layer of another type of material. By leaving some access channels in the cap layer, researchers can pipe in a chemical that reacts with and removes the sacrificial layer, leaving the MEMS device in a cavity protected by the cap layer.

thin-film MEMS encapsulation

An optical image of a 400 x 400um, thin-film MEMS encapsulation developed using the new double-layer capping technique. The smaller square caps sit on top of holes, allowing access to the cavity below while protecting the devices within.

Compared with other encasement methods, TFE can be performed cheaply using the same techniques that are used to build MEMS devices, and it produces less bulky packaging. However, previous attempts at TFE have suffered from two problems: depending on the design of the access holes in the cap layer, removing the sacrificial layer can be time consuming, and mass loading can damage moving components, such as resonators, in MEMS devices.

"Solving both these issues simultaneously is difficult because one can become severe when the other is solved," stated Lee. "We proposed fabricating the cap layer on two levels."

The team's design involves making a grid of square holes in the lower cap layer. A secondary square layer with four legs is deposited on top of each hole, leaving sideways access gaps underneath, rather like a chimney cap. These caps allow access for removing the sacrificial layer while protecting the device beneath from mass loading.

The researchers tested their idea using silicon oxide as the sacrificial layer and aluminum nitride for the cap layers. They were able to remove the silicon oxide using an acid vapor in just 20 minutes, compared to eight hours for previous designs. The result was a strong, free-standing cap with a 3um-thick cavity underneath.

Lee and co-workers state that their TFE cavity design could be built using other materials and may find application beyond MEMS, for instance in microbiology. "Electrodes embedded in a TFE cavity could be used to apply electrostatic forces to biomolecules or even act as a microheater," noted Lee.





Article Comments - Double-layer capping improves packag...
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 
 
Back to Top