Global Sources
EE Times-Asia
Stay in touch with EE Times Asia
 
EE Times-Asia > FPGAs/PLDs
 
 
FPGAs/PLDs  

Performing math operations in FPGAs (Part 3)

Posted: 20 Jan 2014  Print Version  Bookmark and Share

Keywords:FPGA  BCD  floating-point  fixed-point  truncation 

In Part 1, I muttered some inanities about multiplication and division by 10. In Part 2, I rambled on about doing math in BCD. Now, it seems it's time to mutter something about floating-point representations of numbers and how to do some math with them. I considered using floating-point representations for this mysterious project that I've been alluding to (I'll get to that, one of these days, maybe), so I took a quick look at how to implement them.

Now, of course, there are plenty of ways one could represent a floating-point number. You can do it your way, I can do it my way, or we can all agree to follow a standard such as the IEEE 754 2008 standard, for example. Of course, I'm not the first person here to cover the topic of floating-point representations; in fact, Mr. Kjodavix described this way back in 2006. Because of Mr. Kjodavix's article, I wondered whether I should even bother expounding on floating-point concepts. However, we all speak a little differently and we all learn a little differently, so maybe my take on this will make someone else's grasp a little better (I do recommend reading Mr. Kjodavix's article, though).

So what are floating-point numbers? Well, let's start with the fact that, due to the way in which we build our computers using two-state logic (let's not worry about experiments with tertiary, or three-state, logic), we have to store numbers using some form of binary representation. It's relatively easy to use binary values to represent integers, but they don't lent themselves to directly storing real numbers; that is, numbers that include fractional values with digits after the decimal point. In other words, it's relatively easy to use binary to represent a value like 3, but it's less easy to represent a value like 3.141592. Similarly, it's relatively easy to create logic functions to implement mathematical operations on integer values, but it's less easy to work with real numbers.

Of course, we can store numbers in BCD (I talked about this in Part 2), or we could use fixed-point representations (I will talk about this next time), but what do we actually mean by floating-point? Well, it's a lot like the "scientific notation" we learned at high school (e.g. 31.41592x10 -1), but it's stored and manipulated using binary representations.

So, how we might perform the mighty feat of representing a real number in binary? If we would just assume a binimal point (the binimal point is the same as the decimal point in base 10, only it's the binary equivalent in base 2) at some fixed point in the middle, then we'd have a fixed-point representation as illustrated below.


1 • 2 • 3 Next Page Last Page



Article Comments - Performing math operations in FPGAs ...
Comments:  
*  You can enter [0] more charecters.
*Verify code:
 
 
 
Webinars

Seminars

Visit Asia Webinars to learn about the latest in technology and get practical design tips.

 
 
Back to Top